Artemis:用于感知策略学习的结构化视觉推理框架 / Artemis: Structured Visual Reasoning for Perception Policy Learning
1️⃣ 一句话总结
这篇论文提出了一个名为Artemis的新框架,它通过使用结构化的视觉对象框作为中间推理步骤,解决了传统语言推理在视觉感知任务中效果不佳的问题,从而显著提升了机器在理解和处理视觉信息时的准确性和泛化能力。
Recent reinforcement-learning frameworks for visual perception policy have begun to incorporate intermediate reasoning chains expressed in natural language. Empirical observations indicate that such purely linguistic intermediate reasoning often reduces performance on perception tasks. We argue that the core issue lies not in reasoning per se but in the form of reasoning: while these chains perform semantic reasoning in an unstructured linguistic space, visual perception requires reasoning in a spatial and object-centric space. In response, we introduce Artemis, a perception-policy learning framework that performs structured proposal-based reasoning, where each intermediate step is represented as a (label, bounding-box) pair capturing a verifiable visual state. This design enables explicit tracking of intermediate states, direct supervision for proposal quality, and avoids ambiguity introduced by language-based reasoning. Artemis is built on Qwen2.5-VL-3B, achieves strong performance on grounding and detection task and exhibits substantial generalization to counting and geometric-perception tasks. The consistent improvements across these diverse settings confirm that aligning reasoning with spatial representations enhances perception-policy learning. Owing to its strengthened visual reasoning, Artemis also achieves competitive performance on general MLLM benchmarks, illustrating that spatially grounded reasoning provides a principled route toward scalable and general perception policies.
Artemis:用于感知策略学习的结构化视觉推理框架 / Artemis: Structured Visual Reasoning for Perception Policy Learning
这篇论文提出了一个名为Artemis的新框架,它通过使用结构化的视觉对象框作为中间推理步骤,解决了传统语言推理在视觉感知任务中效果不佳的问题,从而显著提升了机器在理解和处理视觉信息时的准确性和泛化能力。