在时间信息缺失场景下稳健的随机微分方程参数估计 / Robust SDE Parameter Estimation Under Missing Time Information Setting
1️⃣ 一句话总结
这篇论文提出了一种新方法,能够在观测数据的时间顺序信息丢失或混乱的情况下,同时恢复时间顺序并准确估计出描述动态过程的随机微分方程参数,从而将参数估计的应用范围扩展到了金融、医疗等对时间敏感但可能因隐私等原因无法提供精确时间戳的领域。
Recent advances in stochastic differential equations (SDEs) have enabled robust modeling of real-world dynamical processes across diverse domains, such as finance, health, and systems biology. However, parameter estimation for SDEs typically relies on accurately timestamped observational sequences. When temporal ordering information is corrupted, missing, or deliberately hidden (e.g., for privacy), existing estimation methods often fail. In this paper, we investigate the conditions under which temporal order can be recovered and introduce a novel framework that simultaneously reconstructs temporal information and estimates SDE parameters. Our approach exploits asymmetries between forward and backward processes, deriving a score-matching criterion to infer the correct temporal order between pairs of observations. We then recover the total order via a sorting procedure and estimate SDE parameters from the reconstructed sequence using maximum likelihood. Finally, we conduct extensive experiments on synthetic and real-world datasets to demonstrate the effectiveness of our method, extending parameter estimation to settings with missing temporal order and broadening applicability in sensitive domains.
在时间信息缺失场景下稳健的随机微分方程参数估计 / Robust SDE Parameter Estimation Under Missing Time Information Setting
这篇论文提出了一种新方法,能够在观测数据的时间顺序信息丢失或混乱的情况下,同时恢复时间顺序并准确估计出描述动态过程的随机微分方程参数,从而将参数估计的应用范围扩展到了金融、医疗等对时间敏感但可能因隐私等原因无法提供精确时间戳的领域。
源自 arXiv: 2601.20268