流形约束最速下降法 / Manifold constrained steepest descent
1️⃣ 一句话总结
这篇论文提出了一种名为MCSD的单循环优化框架,用于解决数据点位于特定几何结构(流形)上的机器学习问题,它通过巧妙结合线性优化和投影步骤,在保持理论收敛性的同时,比现有方法更稳定高效。
Norm-constrained linear minimization oracle (LMO)-based optimizers such as spectral gradient descent and Muon are attractive in large-scale learning, but extending them to manifold-constrained problems is nontrivial and often leads to nested-loop schemes that solve tangent-space subproblems iteratively. We propose \emph{Manifold Constrained Steepest Descent} (MCSD), a single-loop framework for optimization over manifolds that selects a norm-induced steepest-descent direction via an LMO applied to the Riemannian gradient, and then returns to the manifold via projection. Under standard smoothness assumptions, we establish convergence guarantees for MCSD and a stochastic momentum variant. We further introduce \emph{SPEL}, the spectral-norm specialization of MCSD on the Stiefel manifold, which admits scalable implementations via fast matrix sign computations. Experiments on PCA, orthogonality-constrained CNNs, and manifold-constrained LLM adapter tuning demonstrate improved stability and competitive performance relative to standard Riemannian baselines and existing manifold-aware LMO methods.
流形约束最速下降法 / Manifold constrained steepest descent
这篇论文提出了一种名为MCSD的单循环优化框架,用于解决数据点位于特定几何结构(流形)上的机器学习问题,它通过巧妙结合线性优化和投影步骤,在保持理论收敛性的同时,比现有方法更稳定高效。
源自 arXiv: 2601.21487