免训练的基于分数的扩散模型用于参数依赖的随机动力系统 / Training-free score-based diffusion for parameter-dependent stochastic dynamical systems
1️⃣ 一句话总结
这篇论文提出了一种无需训练的扩散模型框架,能够利用有限的参数采样数据,快速生成任意参数值下的随机系统轨迹,从而大幅提升参数研究和实时应用的效率。
Simulating parameter-dependent stochastic differential equations (SDEs) presents significant computational challenges, as separate high-fidelity simulations are typically required for each parameter value of interest. Despite the success of machine learning methods in learning SDE dynamics, existing approaches either require expensive neural network training for score function estimation or lack the ability to handle continuous parameter dependence. We present a training-free conditional diffusion model framework for learning stochastic flow maps of parameter-dependent SDEs, where both drift and diffusion coefficients depend on physical parameters. The key technical innovation is a joint kernel-weighted Monte Carlo estimator that approximates the conditional score function using trajectory data sampled at discrete parameter values, enabling interpolation across both state space and the continuous parameter domain. Once trained, the resulting generative model produces sample trajectories for any parameter value within the training range without retraining, significantly accelerating parameter studies, uncertainty quantification, and real-time filtering applications. The performance of the proposed approach is demonstrated via three numerical examples of increasing complexity, showing accurate approximation of conditional distributions across varying parameter values.
免训练的基于分数的扩散模型用于参数依赖的随机动力系统 / Training-free score-based diffusion for parameter-dependent stochastic dynamical systems
这篇论文提出了一种无需训练的扩散模型框架,能够利用有限的参数采样数据,快速生成任意参数值下的随机系统轨迹,从而大幅提升参数研究和实时应用的效率。
源自 arXiv: 2602.02113