论度量空间中的生成问题 / On Generation in Metric Spaces
1️⃣ 一句话总结
这篇论文将语言生成的理论框架从可数域推广到可分的度量空间,通过引入一种对尺度敏感的维度概念来刻画生成的可能性,并揭示了一个关键的几何差异:在类似欧氏空间的‘加倍空间’中生成性质是稳定的,但在一般的度量空间(如无限维希尔伯特空间)中,生成性质会随着‘新颖性’参数的微小变化而突然失效。
We study generation in separable metric instance spaces. We extend the language generation framework from Kleinberg and Mullainathan [2024] beyond countable domains by defining novelty through metric separation and allowing asymmetric novelty parameters for the adversary and the generator. We introduce the $(\varepsilon,\varepsilon')$-closure dimension, a scale-sensitive analogue of closure dimension, which yields characterizations of uniform and non-uniform generatability and a sufficient condition for generation in the limit. Along the way, we identify a sharp geometric contrast. Namely, in doubling spaces, including all finite-dimensional normed spaces, generatability is stable across novelty scales and invariant under equivalent metrics. In general metric spaces, however, generatability can be highly scale-sensitive and metric-dependent; even in the natural infinite-dimensional Hilbert space $\ell^2$, all notions of generation may fail abruptly as the novelty parameters vary.
论度量空间中的生成问题 / On Generation in Metric Spaces
这篇论文将语言生成的理论框架从可数域推广到可分的度量空间,通过引入一种对尺度敏感的维度概念来刻画生成的可能性,并揭示了一个关键的几何差异:在类似欧氏空间的‘加倍空间’中生成性质是稳定的,但在一般的度量空间(如无限维希尔伯特空间)中,生成性质会随着‘新颖性’参数的微小变化而突然失效。
源自 arXiv: 2602.07710