生成扩散中Föllmer过程的最优性研究 / Variational Optimality of Föllmer Processes in Generative Diffusions
1️⃣ 一句话总结
这篇论文提出了一种新的生成扩散模型构建方法,通过优化扩散系数来最小化估计误差的影响,并证明最优解就是Föllmer过程,这为理解生成模型提供了一种新的变分视角。
We construct and analyze generative diffusions that transport a point mass to a prescribed target distribution over a finite time horizon using the stochastic interpolant framework. The drift is expressed as a conditional expectation that can be estimated from independent samples without simulating stochastic processes. We show that the diffusion coefficient can be tuned \emph{a~posteriori} without changing the time-marginal distributions. Among all such tunings, we prove that minimizing the impact of estimation error on the path-space Kullback--Leibler divergence selects, in closed form, a Föllmer process -- a diffusion whose path measure minimizes relative entropy with respect to a reference process determined by the interpolation schedules alone. This yields a new variational characterization of Föllmer processes, complementing classical formulations via Schrödinger bridges and stochastic control. We further establish that, under this optimal diffusion coefficient, the path-space Kullback--Leibler divergence becomes independent of the interpolation schedule, rendering different schedules statistically equivalent in this variational sense.
生成扩散中Föllmer过程的最优性研究 / Variational Optimality of Föllmer Processes in Generative Diffusions
这篇论文提出了一种新的生成扩散模型构建方法,通过优化扩散系数来最小化估计误差的影响,并证明最优解就是Föllmer过程,这为理解生成模型提供了一种新的变分视角。
源自 arXiv: 2602.10989