📄
Abstract - Investigating GNN Convergence on Large Randomly Generated Graphs with Realistic Node Feature Correlations
There are a number of existing studies analysing the convergence behaviour of graph neural networks on large random graphs. Unfortunately, the majority of these studies do not model correlations between node features, which would naturally exist in a variety of real-life networks. Consequently, the derived limitations of GNNs, resulting from such convergence behaviour, is not truly reflective of the expressive power of GNNs when applied to realistic graphs. In this paper, we will introduce a novel method to generate random graphs that have correlated node features. The node features will be sampled in such a manner to ensure correlation between neighbouring nodes. As motivation for our choice of sampling scheme, we will appeal to properties exhibited by real-life graphs, particularly properties that are captured by the Barabási-Albert model. A theoretical analysis will strongly indicate that convergence can be avoided in some cases, which we will empirically validate on large random graphs generated using our novel method. The observed divergent behaviour provides evidence that GNNs may be more expressive than initial studies would suggest, especially on realistic graphs.
探究图神经网络在具有现实节点特征相关性的大型随机生成图上的收敛性 /
Investigating GNN Convergence on Large Randomly Generated Graphs with Realistic Node Feature Correlations
1️⃣ 一句话总结
这篇论文通过提出一种能生成具有相关节点特征的新型随机图方法,证明了在图神经网络的实际应用中,其表达能力可能比以往基于无相关性假设的理论研究所认为的更强,因为节点特征的相关性可以避免模型在某些情况下过早收敛。