基于三算子分裂的自适应去中心化复合优化 / Adaptive Decentralized Composite Optimization via Three-Operator Splitting
1️⃣ 一句话总结
这篇论文提出了一种新的去中心化网络优化方法,让网络中的每个节点能够自主调整计算步长,从而高效地解决一类包含平滑和非平滑函数的复杂优化问题,并在理论上保证了收敛速度。
The paper studies decentralized optimization over networks, where agents minimize a sum of {\it locally} smooth (strongly) convex losses and plus a nonsmooth convex extended value term. We propose decentralized methods wherein agents {\it adaptively} adjust their stepsize via local backtracking procedures coupled with lightweight min-consensus protocols. Our design stems from a three-operator splitting factorization applied to an equivalent reformulation of the problem. The reformulation is endowed with a new BCV preconditioning metric (Bertsekas-O'Connor-Vandenberghe), which enables efficient decentralized implementation and local stepsize adjustments. We establish robust convergence guarantees. Under mere convexity, the proposed methods converge with a sublinear rate. Under strong convexity of the sum-function, and assuming the nonsmooth component is partly smooth, we further prove linear convergence. Numerical experiments corroborate the theory and highlight the effectiveness of the proposed adaptive stepsize strategy.
基于三算子分裂的自适应去中心化复合优化 / Adaptive Decentralized Composite Optimization via Three-Operator Splitting
这篇论文提出了一种新的去中心化网络优化方法,让网络中的每个节点能够自主调整计算步长,从而高效地解决一类包含平滑和非平滑函数的复杂优化问题,并在理论上保证了收敛速度。
源自 arXiv: 2602.17545